2 Derivation of the formula for norming vector
نویسنده
چکیده
For a system of coupled Schrödinger equations, the relationship is found between the vector-valued norming constants and M + 1 spectra of the M-channel Sturm-Liouville operator with the same potential matrix but different boundary conditions. Under a special choice of particular boundary conditions, this equation for norming vectors has a unique solution. The norming vectors derived from M + 1 spectra and a spectrum of associated boundary value problem uniquely specify the matrix of potentials in the multichannel Schrödinger equation.
منابع مشابه
Derivation and validation of a sensitivity formula for knife-edge slit gamma camera: A theoretical and Monte Carlo simulation study
Introduction: Gamma cameras are proposed for online range verification and treatment monitoring in proton therapy. An Analytical formula was derived and validated for sensitivity of a slit collimator based on the photon fluence concept. Methods: Fluence formulation was generalized for photons distribution function and solved for high-energy point sources. The...
متن کاملAMENABILITY OF VECTOR VALUED GROUP ALGEBRAS
The purpose of this article is to develop the notions of amenabilityfor vector valued group algebras. We prove that L1(G, A) is approximatelyweakly amenable where A is a unital separable Banach algebra. We givenecessary and sufficient conditions for the existence of a left invariant meanon L∞(G, A∗), LUC(G, A∗), WAP(G, A∗) and C0(G, A∗).
متن کاملSymmetric curvature tensor
Recently, we have used the symmetric bracket of vector fields, and developed the notion of the symmetric derivation. Using this machinery, we have defined the concept of symmetric curvature. This concept is natural and is related to the notions divergence and Laplacian of vector fields. This concept is also related to the derivations on the algebra of symmetric forms which has been discu...
متن کاملDifferentiation along Multivector Fields
The Lie derivation of multivector fields along multivector fields has been introduced by Schouten (see cite{Sc, S}), and studdied for example in cite{M} and cite{I}. In the present paper we define the Lie derivation of differential forms along multivector fields, and we extend this concept to covariant derivation on tangent bundles and vector bundles, and find natural relations between them and...
متن کاملPOINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS
The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let be a non-emp...
متن کامل